quote:Risposta al messaggio di bottastra inserito in data 13/09/2014 21:25:46 (Visualizza messaggio in nuova finestra)>> Certo, con il cavalletto le cinghie possono esser tirate meno. Se debbo però dire, io non mando mai a fondo corsa le sospensioni. Il mio sistema garantisce il blocco dello scooter in tutte le direzioni; la cinghie pertanto vanno tirate in modo tale da assicurare l'equilibrio della moto. Io non arrivo neanche a metà corsa delle sospensioni; non serve.
quote:Risposta al messaggio di Panzer inserito in data 14/09/2014 09:12:08 (Visualizza messaggio in nuova finestra)>> Nel caso della foto la situazione è molto diversa. Innanzitutto le vespe sono bloccata in tutte le direzioni dalla guida; poi la guida stessa provvede a sollevare le moto di quel tanto che permette al cavalletto di non fare pressioni sul fondo del mezzo ma esclusivamente di assumere funzione di "equilibratore", fornendo l'appoggio laterale. A questo contribuisce il tradizionale cavalletto largo, tipico della vespa.
quote:Risposta al messaggio di ik6Amo inserito in data 14/09/2014 19:17:31 (Visualizza messaggio in nuova finestra)>> Ma non è il modo giusto di trasportare due ruote. Mick kokorde worldwide president
quote:Risposta al messaggio di Panzer inserito in data 14/09/2014 19:51:18 (Visualizza messaggio in nuova finestra)>> Per un camper forse no. Quello che vedo in foto è unm sistema fatto su misura per quel tipo di scooter. Non dimentichiamo che il cassone del camion che effettua il trasporto è fatto di robusto acciaio e non di legno come il pavimento del garage. Il cavalletto non scarica affatto il peso delle vespa; quasi tutto il peso grava sulle ruote, il cavalletto esercita solo un pò di forza per tenerle in equilibrio. Sono sicuro che se si allenta la cinghia anteriore, il cavalletto si stacca dal pianale del camion.
quote:Risposta al messaggio di bottastra inserito in data 15/09/2014 08:31:46 (Visualizza messaggio in nuova finestra)>> La situazione è molto diversa fra moto sul cavalletto e non. Innanzitutto specifichiamo che sul cavalletto grava circa l'80% del peso; il 20% in genere grava sulla ruota anteriore. Ponendo le cinghie sul manubrio, la forza di queste si scaricherà in gran parte sulla ruota anteriore; poco o nulla sul cavalletto. Il problema sorge quando poniamo le cinghie sul posteriore. Se osserviamo il sistema, andiamo a creare una leva di secondo genere in cui il fulcro è rappresentato dalla ruota anteriore; l'applicazione della potenza dal fissaggio posteriore e la forza (resistenza) dal cavalletto. Questo significa che, oltre al peso dello scooter, sul cavalletto grava una forza verticale data dalla formula: P= R*Br/BP dove: P= forza sul cavalletto; R= forza applicata dalle cinghie di legatura; BR = distanza fra il punto di contatto della ruota anteriore e quello di applicazione delle cinghie; BP= distanza fra il punto di contatto della ruota anteriore ed il punto di contatto del cavalletto. Applicando i valori, considerando uno scooter lungo 1,8 metri, il cavalletto perfettamente al centro del sistema e supponendo di tirare le cinghie per soli 10 Kg avremo 10(R)*1.8(BR)/.9(BP)=20(P) Come vediamo la forza applicata sulle cinghie posteriori viene praticamente raddoppiata dalla leva. Altro fenomeno che si verifica e che il fulcro della leva viene sollecitato, nel caso preso in esame, con una forza eguale e contraria a quella applicata in coda. La conseguenza è un maggiore sforzo delle cinghie anteriori e quindi una maggior sollecitazione sugli agganci anteriori. Tutto questo non si verifica eseguendo la legatura anteriore e posteriore con lo scooter sulle sole ruote. Naturalmente la situazione peggiora, sia sul punto centrale che sull'anteriore, quanto più il cavalletto si trova avanzato. Basta applicare la formula per trovare i valori.
Ciao a tutti, Ciao @roni163 e complimenti per il lavoro. L'idea è ottima e seguirei volentieri la tua esperi...
Il Grinch - 2025-01-20 17:03:44
Ottima soluzione, avanti così a tutto Green... Peccato che scalderà come un phon e per farlo funzionare use...
eolo 58 - 2025-01-15 00:33:49
Bravissimo, il nome del kit, grazie
nasofino - 2025-01-13 21:05:12
Grazie Brunella un abbraccio! :)
Steva1979 - 2025-01-13 10:13:22